- Chọn bài bác -Bài 1: bắt đầu về phương trìnhBài 2: Phương trình hàng đầu một ẩn và bí quyết giảiBài 3: Phương trình chuyển được về dạng ax + b = 0 - luyện tập (trang 13-14)Luyện tập (trang 13-14)Bài 4: Phương trình tích - luyện tập (trang 17)Luyện tập (trang 17)Bài 5: Phương trình cất ẩn ở mẫu - luyện tập (trang 22-23)Luyện tập (trang 22-23)Bài 6: Giải bài bác toán bằng phương pháp lập phương trìnhBài 7: Giải bài toán bằng cách lập phương trình (tiếp) - luyện tập (trang 31-32)Luyện tập (trang 31-32)Ôn tập chương 3 (Câu hỏi - bài tập)

Mục lục

Xem toàn cục tài liệu Lớp 8: tại đây

Xem cục bộ tài liệu Lớp 8: tại đây

Sách giải toán 8 bài bác 4: Phương trình tích – luyện tập (trang 17) khiến cho bạn giải các bài tập vào sách giáo khoa toán, học giỏi toán 8 để giúp đỡ bạn rèn luyện kỹ năng suy luận phù hợp và thích hợp logic, hình thành khả năng vận dụng kết thức toán học tập vào đời sống và vào các môn học tập khác:

Trả lời câu hỏi Toán 8 Tập 2 bài 4 trang 15: Phân tích đa thức P(x) = (x^2 – 1) + (x + 1)(x – 2) thành nhân tử.

Bạn đang xem: Bài 4 phương trình tích

Lời giải

P(x) = (x^2 – 1) + (x + 1)(x – 2)

P(x) = (x – 1) (x+1) + (x + 1)(x – 2)

P(x) = (x + 1) (x – 1 + x – 2)

P(x) = (x +1) (2x – 3)

Trả lời câu hỏi Toán 8 Tập 2 bài bác 4 trang 15: Hãy nhớ lại một đặc thù của phép nhân những số, phát biểu tiếp các xác định sau:

Trong một tích nếu bao gồm một vượt số bằng 0 thì …; ngược lại, nếu như tích bởi 0 thì ít nhất một trong số thừa số của tích …

Lời giải

Trong một tích nếu gồm một quá số bởi 0 thì tích bằng 0; ngược lại, nếu tích bởi 0 thì tối thiểu một trong các thừa số của tích bằng 0

Trả lời thắc mắc Toán 8 Tập 2 bài bác 4 trang 16: Giải phương trình:

(x – 1)(x2 + 3x – 2) – (x3 – 1) = 0.

Lời giải

(x – 1)(x2 + 3x – 2) – (x3 – 1) = 0

⇔ (x – 1)(x2 + 3x – 2) – (x – 1)(x2 + x + 1) = 0

⇔ (x – 1)<(x2 + 3x – 2) – (x2 + x + 1)> – 0

⇔ (x – 1)(2x – 3) = 0

⇔ x – 1 = 0 hoặc 2 – 3 = 0

x – 1 = 0 ⇔x = 1

2x – 3 = 0 ⇔x = 3/2

Vậy tập nghiệm của phương trình là S = 1;3/2

Trả lời câu hỏi Toán 8 Tập 2 bài xích 4 trang 17: : Giải phương trình (x3 + x2) + (x2 + x) = 0.

Lời giải

(x3 + x2) + (x2 + x) = 0


⇔x2 (x + 1) + x(x + 1) = 0

⇔(x2 + x)(x + 1) = 0

⇔x(x + 1)(x + 1) = 0

⇔x = 0 hoặc x + 1 = 0

⇔x = 0 hoặc x = -1

Vậy tập nghiệm của phương trình là : S = 0; -1

Bài 4: Phương trình tích

Bài 21 (trang 17 SGK Toán 8 tập 2): Giải những phương trình:

a) (3x – 2)(4x + 5) = 0

b) (2,3x – 6,9)(0,1x + 2) = 0

c) (4x + 2)(x2 + 1) = 0

d) (2x + 7)(x – 5)(5x + 1) = 0

Lời giải:

a) (3x – 2)(4x + 5) = 0

⇔ 3x – 2 = 0 hoặc 4x + 5 = 0

+ 3x – 2 = 0 ⇔ 3x = 2 ⇔

*

+ 4x + 5 = 0 ⇔ 4x = -5 ⇔

*

Vậy phương trình tất cả tập nghiệm

*

b) (2,3x – 6,9).(0,1x + 2) = 0

⇔ 2,3x – 6,9 = 0 hoặc 0,1x + 2 = 0

+ 2,3x – 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3.

+ 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập nghiệm

*

c) (4x + 2)(x2 + 1) = 0

⇔ 4x + 2 = 0 hoặc x2 + 1 = 0

+ 4x + 2 = 0 ⇔ 4x = -2 ⇔ x =

*

+ x2 + 1 = 0 ⇔ x2 = -1 (Phương trình vô nghiệm).

Vậy phương trình tất cả tập nghiệm

*

d) (2x + 7)(x – 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x – 5 = 0 hoặc 5x + 1 = 0

+ 2x + 7 = 0 ⇔ 2x = -7 ⇔

*

+ x – 5 = 0 ⇔ x = 5.

+ 5x + 1 = 0 ⇔ 5x = -1 ⇔

*

Vậy phương trình có tập nghiệm

*

Bài 4: Phương trình tích

Bài 22 (trang 17 SGK Toán 8 tập 2): bằng cách phân tích vế trái thành nhân tử, giải những phương trình sau:

a) 2x(x – 3) + 5(x – 3) = 0;

b) (x2 – 4) + (x – 2)(3 – 2x) = 0;

c) x3 – 3x2 + 3x – 1 = 0;

d) x(2x – 7) – 4x + 14 = 0;

e) (2x – 5)2 – (x + 2)2 = 0;

f) x2 – x – (3x – 3) = 0.

Lời giải:

a) 2x(x – 3) + 5(x – 3) = 0


⇔ (2x + 5)(x – 3) = 0

⇔ 2x + 5 = 0 hoặc x – 3 = 0

+ 2x + 5 = 0 ⇔2x = -5 ⇔ x = -5/2

+ x – 3 = 0 ⇔x = 3.

Vậy phương trình tất cả tập nghiệm

*

b) (x2 – 4) + (x – 2)(3 – 2x) = 0

⇔ (x – 2)(x + 2) + (x – 2)(3 – 2x) = 0

⇔ (x – 2)<(x + 2) + (3 – 2x)> = 0

⇔ (x – 2)(5 – x) = 0

⇔ x – 2 = 0 hoặc 5 – x = 0

+ x – 2 = 0 ⇔ x = 2

+ 5 – x = 0 ⇔ x = 5.

Vậy tập nghiệm của phương trình là S = 2; 5.

c) x3 – 3x2 + 3x – 1 = 0

⇔ (x – 1)3 = 0 (Hằng đẳng thức)

⇔ x – 1 = 0

⇔ x = 1.

Vậy tập nghiệm của phương trình là S=1.

d) x(2x – 7) – 4x + 14 = 0

⇔ x(2x – 7) – 2(2x – 7) = 0

⇔(x – 2)(2x – 7) = 0

⇔ x – 2 = 0 hoặc 2x – 7 = 0

+ x – 2 = 0 ⇔ x = 2.

+ 2x – 7 = 0 ⇔ 2x = 7 ⇔ x = 7/2

Vậy tập nghiệm của phương trình là

*

e) (2x – 5)2 – (x + 2)2 = 0

⇔ <(2x – 5) + (x + 2)>.<(2x – 5) – (x + 2)>= 0

⇔ (3x – 3)(x – 7) = 0

⇔ 3x – 3 = 0 hoặc x – 7 = 0

+ 3x – 3 = 0 ⇔3x = 3 ⇔ x = 1.

+ x – 7 = 0 ⇔ x = 7.

Vậy phương trình gồm tập nghiệm S = 1; 7.

f) x2 – x – (3x – 3) = 0

⇔ x(x – 1) – 3(x – 1) = 0

⇔ (x – 3)(x – 1) = 0

⇔ x – 3 = 0 hoặc x – 1 = 0

+ x – 3 = 0 ⇔ x = 3

+ x – 1 = 0 ⇔ x = 1.

Vậy phương trình có tập nghiệm S = 1; 3.

Bài 4: Phương trình tích


Luyện tập (trang 17 sgk Toán 8 Tập 2)

Bài 23 (trang 17 SGK Toán 8 tập 2): Giải những phương trình:

*

Lời giải:

a) x(2x – 9) = 3x(x – 5)

⇔ x.(2x – 9) – x.3(x – 5) = 0

⇔ x.<(2x – 9) – 3(x – 5)> = 0

⇔ x.(2x – 9 – 3x + 15) = 0

⇔ x.(6 – x) = 0

⇔ x = 0 hoặc 6 – x = 0

+ 6 – x = 0 ⇔ x = 6

Vậy tập nghiệm của phương trình là S = 0; 6.

b) 0,5x(x – 3) = (x – 3)(1,5x – 1)

⇔ 0,5x(x – 3) – (x – 3)(1,5x – 1) = 0

⇔ (x – 3).<0,5x – (1,5x – 1)> = 0

⇔ (x – 3)(0,5x – 1,5x + 1) = 0

⇔ (x – 3)(1 – x) = 0

⇔ x – 3 = 0 hoặc 1 – x = 0

+ x – 3 = 0 ⇔ x = 3.

+ 1 – x = 0 ⇔ x = 1.

Vậy phương trình gồm tập nghiệm S = 1; 3.

c) 3x – 15 = 2x(x – 5)

⇔ (3x – 15) – 2x(x – 5) = 0

⇔3(x – 5) – 2x(x – 5) = 0

⇔ (3 – 2x)(x – 5) = 0

⇔ 3 – 2x = 0 hoặc x – 5 = 0

+ 3 – 2x = 0 ⇔ 2x = 3 ⇔ x = 3/2.

+ x – 5 = 0 ⇔ x = 5.

Vậy phương trình có tập nghiệm

*

*

⇔ 3x – 7 = x(3x – 7) (Nhân cả nhị vế với 7).

⇔ (3x – 7) – x(3x – 7) = 0

⇔ (3x – 7)(1 – x) = 0

⇔ 3x – 7 = 0 hoặc 1 – x = 0

+ 3x – 7 = 0 ⇔ 3x = 7 ⇔ x = 7/3.

+ 1 – x = 0 ⇔ x = 1.

Vậy phương trình gồm tập nghiệm

*

Bài 4: Phương trình tích

Luyện tập (trang 17 sgk Toán 8 Tập 2)

Bài 24 (trang 17 SGK Toán 8 tập 2): Giải những phương trình:

a) (x2 – 2x + 1) – 4 = 0

b) x2 – x = -2x + 2

c) 4x2 + 4x + 1 = x2.

d) x2 – 5x + 6 = 0.

Lời giải:

a) (x2 – 2x + 1) – 4 = 0


⇔ (x – 1)2 – 22 = 0

⇔ (x – 1 – 2)(x – 1 + 2) = 0

(Sử dụng hằng đẳng thức)

⇔ (x – 3)(x + 1) = 0

⇔ x – 3 = 0 hoặc x + 1 = 0

+ x – 3 = 0 ⇔ x = 3.

+ x + 1 = 0 ⇔ x = -1.

Vậy tập nghiệm của phương trình là S = -1; 3.

b) x2 – x = -2x + 2

⇔ x2 – x + 2x – 2 = 0

⇔ x(x – 1) + 2(x – 1) = 0

⇔ (x + 2)(x – 1) = 0

(Đặt nhân tử chung)

⇔ x + 2 = 0 hoặc x – 1 = 0

+ x + 2 = 0 ⇔x = -2

+ x – 1 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là S = -2; 1.

c) 4x2 + 4x + 1 = x2

⇔ 4x2 + 4x + 1 – x2 = 0

⇔ (2x + 1)2 – x2 = 0

⇔ (2x + 1 – x)(2x + 1 + x) = 0

(Sử dụng hằng đẳng thức)

⇔ (x + 1)(3x + 1) = 0

⇔ x + 1 = 0 hoặc 3x + 1 = 0

+ x + 1 = 0 ⇔ x = -1.

+ 3x + 1 = 0 ⇔ 3x = -1 ⇔

*

Vậy phương trình tất cả tập nghiệm

*

d) x2 – 5x + 6 = 0

⇔ x2 – 2x – 3x + 6 = 0

(Tách để xuất hiện thêm nhân tử chung)

⇔ (x2 – 2x) – (3x – 6) = 0

⇔ x(x – 2) – 3(x – 2) = 0

⇔(x – 3)(x – 2) = 0

⇔ x – 3 = 0 hoặc x – 2 = 0

+ x – 3 = 0 ⇔ x = 3.

+ x – 2 = 0 ⇔ x = 2.

Vậy tập nghiệm của phương trình là S = 2; 3.

Bài 4: Phương trình tích

Luyện tập (trang 17 sgk Toán 8 Tập 2)

Bài 25 (trang 17 SGK Toán 8 tập 2): Giải những phương trình:

a) 2x3 + 6x2 = x2 + 3x


b) (3x – 1)(x2 + 2) = (3x – 1)(7x – 10).

Lời giải:

a) 2x3 + 6x2 = x2 + 3x

⇔ (2x3 + 6x2) – (x2 + 3x) = 0

⇔ 2x2(x + 3) – x(x + 3) = 0

⇔ x(x + 3)(2x – 1) = 0

(Nhân tử thông thường là x(x + 3))

⇔ x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

+ x + 3 = 0 ⇔ x = -3.

+ 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

Vậy tập nghiệm của phương trình là

*

b) (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)

⇔ (3x – 1)(x2 + 2) – (3x – 1)(7x – 10)

⇔ (3x – 1)(x2 + 2 – 7x + 10) = 0

⇔ (3x – 1)(x2 – 7x + 12) = 0

⇔ (3x – 1)(x2 – 4x – 3x + 12) = 0

⇔ (3x – 1) = 0

⇔ (3x – 1)(x – 3)(x – 4) = 0

⇔ 3x – 1 = 0 hoặc x – 3 = 0 hoặc x – 4 = 0

+ 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.

+ x – 3 = 0 ⇔ x = 3.

+ x – 4 = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm là

*

Bài 4: Phương trình tích

Luyện tập (trang 17 sgk Toán 8 Tập 2)

Chuẩn bị:

Giáo viên phân tách lớp thành n nhóm, mỗi nhóm tất cả 4 em làm thế nào để cho các nhóm đều phải có em học giỏi, học khá, học tập trung bình… Mỗi đội tự đặt mang lại nhóm mình một cái tên, chẳng hạn, đội “Con Nhím”, team “Ốc Nhồi”, team “Đoàn Kết”… trong những nhóm, học sinh tự tấn công số từ một đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,…

Giáo viên chuẩn bị 4 đề toán về giải phương trình, tiến công số từ là một đến 4. Từng đề toán được photocopy thành n phiên bản và cho mỗi bản vào một phong phân bì riêng. Như vậy sẽ sở hữu n suy bì chứa đề toán số 1, m bì chứa đề toán số 2… những đề toán được lựa chọn theo cách làm sau:

Đề số 1 chứa x; đề số 2 đựng x với y; đề số 3 cất y với z; đề số 4 đựng z và t ( xem bộ đề mẫu mã dưới đây).

Cách chơi:

Tổ chức từng nhóm học sinh ngồi theo hàng dọc, mặt hàng ngang, tốt vòng tròn quanh một chiếc bàn, tùy điều kiện riêng của lớp.

Giáo viên phân phát đề tiên phong hàng đầu cho học sinh số 1 của những nhóm, đề số 2 cho học viên số 2, …

Khi có hiệu lệnh, học viên số 1 của những nhóm nhanh lẹ mở đề số 1, giải rồi gửi giá trị x tìm được cho mình số 2 của group mình. Khi nhận được giá trị x đó, học viên số 2 mới được phép mở đề, núm giá trị của x vào, giải phương trình để tìm y rồi đưa đáp số cho chính mình số 3 của group mình. Học sinh số 3 cũng làm cho tương tự. Học viên số 4 đưa gái trị tìm được của t đến giáo viên (đồng thời là giám khảo).

Nhóm làm sao nộp công dụng đúng thứ nhất thì chiến hạ cuộc.

Lời giải:

– học sinh 1: (Đề số 1) Giải phương trình: 2(x – 2) + 1 = x – 1.

⇔ 2x – 4 + 1 = x – 1

⇔ 2x – x = -1 + 4 – 1

⇔ x = 2.

– học sinh 2: (Đề số 2) vắt x = 2 vào phương trình ta được phương trình mới:

(2 + 3).y = 2 + y

⇔ 5y = 2 + y

⇔ 4y = 2

⇔ y = 1/2


– học sinh 3: (Đề số 3) nuốm y = một nửa vào phương trình ta được phương trình mới:

⇔ 3 + 3z = 5

⇔ 3z = 2

⇔ z = 2/3.

– học sinh 4: (đề số 4) rứa z = 2/3 vào phương trình ta được:

⇔ 2(t2 – 1) = t2 + t

⇔ 2(t2 – 1) – (t2 + t) = 0

⇔ 2(t – 1)(t + 1) – t(t + 1) = 0

⇔ (t + 1)(2t – 2 – t) = 0

⇔ (t + 1)(t – 2) = 0

⇔ t + 1 = 0 hoặc t – 2 = 0

+ t + 1 = 0 ⇔ t = -1 (loại vị có điều kiện t > 0).

+ t – 2 = 0 ⇔ t = 2 (thỏa mãn).

Vậy t = 2.

Bài 4: Phương trình tích

Luyện tập (trang 17 sgk Toán 8 Tập 2)

Chuẩn bị:

Giáo viên chia lớp thành n nhóm, mỗi nhóm tất cả 4 em làm thế nào để cho các nhóm đều phải sở hữu em học tập giỏi, học tập khá, học trung bình… Mỗi nhóm tự đặt cho nhóm mình một chiếc tên, chẳng hạn, team “Con Nhím”, team “Ốc Nhồi”, nhóm “Đoàn Kết”… trong mỗi nhóm, học sinh tự tiến công số từ là một đến 4. Như vậy sẽ có được n học sinh số 1, n học viên số 2,…

Giáo viên chuẩn bị 4 đề toán về giải phương trình, đánh số từ là 1 đến 4. Từng đề toán được photocopy thành n bản và đến mỗi phiên bản vào một phong tị nạnh riêng. Như vậy sẽ có được n tị nạnh chứa đề toán số 1, m suy bì chứa đề toán số 2… những đề toán được lựa chọn theo công thức sau:

Đề số 1 chứa x; đề số 2 cất x và y; đề số 3 cất y với z; đề số 4 cất z và t ( xem cỗ đề chủng loại dưới đây).

Cách chơi:

Tổ chức mỗi nhóm học viên ngồi theo sản phẩm dọc, hàng ngang, giỏi vòng tròn quanh một cái bàn, tùy điều kiện riêng của lớp.

Giáo viên phân phát đề số 1 cho học viên số 1 của các nhóm, đề số 2 cho học viên số 2, …

Khi tất cả hiệu lệnh, học sinh số 1 của những nhóm hối hả mở đề số 1, giải rồi chuyển giá trị x search được cho mình số 2 của group mình. Lúc nhận giá tốt trị x đó, học viên số 2 bắt đầu được phép mở đề, cầm cố giá trị của x vào, giải phương trình nhằm tìm y rồi chuyển đáp số cho mình số 3 của group mình. Học sinh số 3 cũng làm tương tự. Học sinh số 4 gửi gái trị tìm được của t đến giáo viên (đồng thời là giám khảo).

Nhóm nào nộp công dụng đúng thứ nhất thì thắng cuộc.

Lời giải:

– học sinh 1: (Đề số 1) Giải phương trình: 2(x – 2) + 1 = x – 1.

⇔ 2x – 4 + 1 = x – 1

⇔ 2x – x = -1 + 4 – 1

⇔ x = 2.

– học viên 2: (Đề số 2) cố gắng x = 2 vào phương trình ta được phương trình mới:

(2 + 3).y = 2 + y

⇔ 5y = 2 + y

⇔ 4y = 2

⇔ y = 1/2

– học viên 3: (Đề số 3) cố y = một nửa vào phương trình ta được phương trình mới:

⇔ 3 + 3z = 5

⇔ 3z = 2

⇔ z = 2/3.

– học sinh 4: (đề số 4) rứa z = 2/3 vào phương trình ta được:

⇔ 2(t2 – 1) = t2 + t

⇔ 2(t2 – 1) – (t2 + t) = 0

⇔ 2(t – 1)(t + 1) – t(t + 1) = 0


⇔ (t + 1)(2t – 2 – t) = 0

⇔ (t + 1)(t – 2) = 0

⇔ t + 1 = 0 hoặc t – 2 = 0

+ t + 1 = 0 ⇔ t = -1 (loại do có đk t > 0).

+ t – 2 = 0 ⇔ t = 2 (thỏa mãn).

Vậy t = 2.

Bài 4: Phương trình tích

Luyện tập (trang 17 sgk Toán 8 Tập 2)

Chuẩn bị:

Giáo viên phân tách lớp thành n nhóm, từng nhóm có 4 em sao cho các nhóm đều có em học giỏi, học tập khá, học trung bình… Mỗi team tự đặt mang lại nhóm mình một cái tên, chẳng hạn, đội “Con Nhím”, nhóm “Ốc Nhồi”, team “Đoàn Kết”… trong mỗi nhóm, học viên tự tiến công số từ một đến 4. Như vậy sẽ sở hữu được n học sinh số 1, n học sinh số 2,…

Giáo viên chuẩn bị 4 đề toán về giải phương trình, tấn công số từ là một đến 4. Từng đề toán được photocopy thành n bạn dạng và cho mỗi bản vào một phong suy bì riêng. Như vậy sẽ sở hữu n phân bì chứa đề toán số 1, m so bì chứa đề toán số 2… các đề toán được chọn theo cách làm sau:

Đề tiên phong hàng đầu chứa x; đề số 2 cất x với y; đề số 3 chứa y với z; đề số 4 cất z và t ( xem bộ đề chủng loại dưới đây).

Cách chơi:

Tổ chức từng nhóm học sinh ngồi theo hàng dọc, mặt hàng ngang, giỏi vòng tròn quanh một chiếc bàn, tùy đk riêng của lớp.

Giáo viên vạc đề số 1 cho học viên số 1 của những nhóm, đề số 2 cho học sinh số 2, …

Khi bao gồm hiệu lệnh, học viên số 1 của những nhóm gấp rút mở đề số 1, giải rồi chuyển giá trị x search được cho bạn số 2 của nhóm mình. Khi nhận được giá trị x đó, học sinh số 2 mới được phép mở đề, cố kỉnh giá trị của x vào, giải phương trình nhằm tìm y rồi gửi đáp số cho mình số 3 của nhóm mình. Học sinh số 3 cũng làm tương tự. Học viên số 4 đưa gái trị tìm được của t đến giáo viên (đồng thời là giám khảo).

Xem thêm: Cấu Hình E Của Nito - Khái Quát Về Nhóm Nito

Nhóm nào nộp tác dụng đúng thứ nhất thì chiến hạ cuộc.

Lời giải:

– học viên 1: (Đề số 1) Giải phương trình: 2(x – 2) + 1 = x – 1.

⇔ 2x – 4 + 1 = x – 1

⇔ 2x – x = -1 + 4 – 1

⇔ x = 2.

– học sinh 2: (Đề số 2) thế x = 2 vào phương trình ta được phương trình mới:

(2 + 3).y = 2 + y

⇔ 5y = 2 + y

⇔ 4y = 2

⇔ y = 1/2

– học sinh 3: (Đề số 3) cố y = một nửa vào phương trình ta được phương trình mới: