Các dạng toán phương trình lượng giác, phương thức giải và bài xích tập trường đoản cú cơ phiên bản đến cải thiện - toán lớp 11

Sau khi làm quen với các hàm lượng giác thì các dạng bài xích tập về phương trình lượng giác chính là nội dung tiếp theo mà những em đang học trong chương trình toán lớp 11.

Bạn đang xem: Bài tập về phương trình lượng giác


Vậy phương trình lượng giác có các dạng toán nào, phương thức giải ra sao? họ cùng tìm hiểu qua nội dung bài viết này, đồng thời vận dụng các cách thức giải này để gia công các bài xích tập từ cơ bản đến nâng cao về phương trình lượng giác.

I. định hướng về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong cung thỏa sinα = a, khi đó phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Khi đó các nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 cung thỏa cosα = a, lúc ấy phương trình (2) có các nghiệm là:

 x = ±α + k2π, ()

- Nếu α vừa lòng điều khiếu nại 0 ≤ α ≤ π với cosα = a thì ta viết α = arccosa. Khi đó những nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có các nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay điều kiện của phương trình (3) là: 

*

- Nếu α thỏa mãn điều kiện

*

- Nếu α thỏa mãn điều kiện

*

II. Các dạng toán về Phương trình lượng giác và phương thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng các công thức nghiệm khớp ứng với mỗi phương trình.

* ví dụ như 1 (Bài 1 trang 28 SGK Đại số cùng Giải tích 11): Giải các phương trình sau:

a) b)

b)

d)

*

* giải thuật bài 1 trang 28 SGK Đại số và Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* lấy ví dụ 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một vài phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng các công thức biến đổi để mang về phương trình lượng giác đã mang lại về phương trình cơ bản như Dạng 1.

* lấy ví dụ như 1: Giải các phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu lại ý: Bài toán trên áp dụng công thức:

 

*
*

 

*
*

* ví dụ 2: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu giữ ý: bài xích toán áp dụng công thức chuyển đổi tích thành tổng:

 

*

 

*

 

*

* lấy một ví dụ 3: Giải những phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu lại ý: Bài toán trên có áp dụng công thức đổi khác tổng thành tích và phương pháp nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình số 1 có một hàm số lượng giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* ví dụ 1: Giải những phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai có một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta có phương trình at2 + bt + c = 0.

* lưu lại ý: Khi đặt t=sinx (hoặc t=cosx) thì phải tất cả điều kiện: -1≤t≤1

* ví dụ 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 buộc phải loại

*
*
 
*

* Chú ý: Đối với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương pháp giải như sau:

 - Ta có: cosx = 0 không phải là nghiệm của phương trình vị a≠0,

 Chia 2 vế mang đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - nếu như phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta cố kỉnh d = d.sin2x + d.cos2x, với rút gọn đem về dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ cách 1: Chia hai vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ bí quyết 2: Sử dụng công thức sinx cùng cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu giữ ý: PT: asinx + bcosx = c, (a≠0,b≠0) gồm nghiệm khi c2 ≤ a2 + b2

• Dạng bao quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu lại ý: bài toán áp dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng cùng với sinx và cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Loại Bỏ Web Companion ( Lavasoft Là Gì Và Có Nên Xóa Nó Không?

* Phương pháp

- Đặt t = sinx + cosx, khi đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu giữ ý: 

*
 nên đk của t là: 

- cho nên vì thế sau khi kiếm được nghiệm của PT (*) bắt buộc kiểm tra (đối chiếu) lại điều kiện của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 không hẳn là PT dạng đối xứng nhưng mà cũng rất có thể giải bằng cách tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải những phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài bác tập về những dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số với Giải tích 11): Với mọi giá trị làm sao của x thì giá trị của các hàm số y = sin 3x cùng y = sin x bằng nhau?

° giải mã bài 2 trang 28 SGK Đại số cùng Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài bác 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT bao gồm nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT tất cả nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số cùng Giải tích 11): Giải phương trình 

° giải thuật bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến đây ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT gồm họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số và Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số và Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT bao gồm tập nghiệm 

*

* bài xích 2 (trang 36 SGK Đại số cùng Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải mã bài 2 trang 36 SGK Đại số với Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, khi ấy PT (1) trở thành: 2t2 – 3t + 1 = 0