1. Nguyên hàm là gì?

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F"(x) = f(x) với tất cả x ∈ K.

Bạn đang xem: Bảng nguyên hàm logarit

2. đặc điểm nguyên hàm

Nguyên hàm có 3 tính chất quan trọng cần nhớ:

*

2. Bảng nguyên hàm

a) Bảng cách làm nguyên hàm cơ bản

*

b) Bảng nguyên hàm mở rộng

*

3. Các phương thức tính nguyên hàm

Dạng 1. Nguyên hàm cơ bản

Dạng 2. Sử dụng cách thức ĐỔI BIẾN để tìm nguyên hàm

a) Đổi biến hóa tổng quát

Bước 1: lựa chọn t = φ(x). Trong số đó φ(x) là hàm số mà lại ta lựa chọn thích hợp.Bước 2: Tính vi phân nhị về dt = φ"(x)dxBước 3: thể hiện f(x)dx = g<φ(x)>φ"(x)dx = g(t)dt.Bước 4: lúc ấy $I = int fleft( x ight)dx $ $ = int gleft( t ight)dt $ $ = Gleft( t ight) + C$

Ví dụ: kiếm tìm nguyên hàm của hàm số $I = int frac1xsqrt ln x + 1 dx $

Hướng dẫn giải

Bước 1: lựa chọn $t = sqrt ln x + 1 Rightarrow t^2 = ln x + 1$Bước 2: Tính vi phân nhị về dt = – 3sinx.dxBước 3: thể hiện $int fleft( x ight)dx = – frac13int frac1t.dt $Bước 4: khi ấy $I = – frac13ln left| t ight| + C$ $ = – frac13ln left| 1 + 3cos x ight| + C$

b) Đổi biến tấu 1

*

c) Đổi biến dị 2

*

Dạng 3. Nguyên hàm từng phần

*

Nguyên tắc chung để tại vị u cùng dv: tìm kiếm được v thuận lợi và ∫v.du tính được

Nhấn mạnh: sản phẩm tự ưu tiên khi lựa chọn đặt u: “Nhất lô, nhị đa, tam lượng, tứ mũ” (hàm lôgarit, hàm đa thức, hàm lượng giác, hàm mũ).

Ví dụ: kiếm tìm nguyên hàm của hàm số f(x) = x.e2x

Hướng dẫn giải

Bước 1: Đặt $left{ eginarrayl u = ln left( 2x ight)\ dv = x.dx endarray ight. Rightarrow left{ eginarrayl du = frac1x\ v = fracx^22 endarray ight.$

Bước 2: Ta thấy $Fleft( x ight) = int fleft( x ight) dx$ $ = fracx^22.ln left( 2x ight) – int frac1x.fracx^22 dx$ $ = fracx^22.ln left( 2x ight) – fracx^24 + C$ $ = fracx^22.left( ln left( 2x ight) – frac12 ight) + C$

Dạng 4. Phương pháp tính nguyên hàm bằng máy tính

Cho nguyên hàm $int fleft( x ight)dx $ = F(x) + C. Hãy tìm kiếm f(x) hoặc F(x)

Hướng dẫn

Để giải, mình sẽ hướng dẫn giải pháp bấm máy vi tính nguyên hàm nhanh theo 3 cách sau:

Bước 1: thừa nhận shift $fracddxleft( Fleft( x ight) ight) – fleft( X ight)$

Bước 2: dấn phím Calc nhập X = 2.5

Bước 3: Đánh giá bán nghiệm

Nếu kết quả bằng 0 (gần bởi 0 ) thì chính là đáp án yêu cầu chọn

Ví dụ: Tìm toàn bộ nghiệm của hàm số f(x) = $frac12x + 3$ là

A. $frac12.lnleft| 2x + 3 ight| + C$

B. $frac12.lnleft( 2x + 3 ight) + C$

C. Ln|2x + 3| + C

D. $frac1ln 2.$ln|2x + 3| + C

Hướng dẫn bấm đồ vật tính

Bước 1: Nhập vào máy vi tính casio $fracddxleft( frac12.ln left( ight) ight)_x = X – frac12x + 3$

Bước 2: CALC X = -2

Lưu ý: Trong công dụng A cùng C nếu cho X = 2 thì các cho hiệu quả là 0. Vậy khi gồm trị hoàn hảo thì cho X một giá bán trị mang đến biểu thức vào trị hoàn hảo nhất âm.

Kết luận: Chọn giải đáp A.

Dạng 5. Tính nguyên hàm của hàm số

Tìm nguyên hàm dạng $left< eginarrayl I = int P(x)sin axdx \ I = int P(x)c mosaxdx endarray ight.$ với $P(x)$ là một nhiều thứcTa lựa lựa chọn 1 trong hai biện pháp sau:

Cách 1: thực hiện nguyên hàm từng phần, triển khai theo quá trình sau:

Bước 1: Đặt: $left{ eginarrayl u = P(x)\ dv = left< eginarrayl mathop m s olimits minaxdx\ mcosaxdx endarray ight. endarray ight.$ $ o left{ eginarrayl du = P"(x)dx\ v = left< eginarrayl frac – 1ac mosax\ frac m1 masin ax endarray ight. endarray ight.$Bước 2: cầm cố vào phương pháp nguyên hàm từng phần.Bước 3: thường xuyên thủ tục như trên ta sẽ khử được bậc của nhiều thức.

Xem thêm: 24 7 Nghĩa Là Gì ? Cách Phân Biệt 24/7 Với 24/24

Cách 2: Sử dụng cách thức hệ số bất định, tiến hành theo quá trình sau:

Bước 1: Ta có: $I = int P(x)c mosaxdx $ $ m = A(x)sinax + B(x)cosax + C$ $(1)$, trong số đó $A(x)$ với $B(x)$ là các đa thức cùng bậc với $P(x).$ Bước 2: đem đạo hàm nhì vế của $(1)$: $P(x)c mosax$ $ m = A"(x)cosax – A(x)a m.sinax$ $ m + B"(x)sinax + aB(x)cosax.$Bước 3: Sử dụng phương thức hệ số cô động ta xác minh được $A(x)$ và $B(x).$

Nhận xét: nếu bậc của nhiều thức lớn hơn $3$ thì bí quyết 1 tỏ ra cồng kềnh, vì lúc ấy ta triển khai số lần nguyên hàm từng phần bằng với số bậc của nhiều thức, vì vậy ta đi đến nhận định và đánh giá như sau:

Nếu bậc của nhiều thức nhỏ tuổi hơn hoặc bằng $2$: Ta sử dụng cách 1.Nếu bậc của nhiều thức to hơn hoặc bằng $3$: Ta áp dụng cách 2.

Ví dụ: Tìm nguyên hàm $int xsin ^2xdx .$

Giải

Ta có: $I = int xleft( frac1 – c mos2x2 ight)dx $ $ = frac12int xdx – frac12int xcos 2xdx $ $ = frac14x^2 – frac12J$ $(1).$

Tính: $J = int xcos 2xdx .$

Đặt: $left{ eginarrayl u = x\ dv = c mos2xdx endarray ight.$ $ o left{ eginarrayl du = dx\ v = frac12sin 2x endarray ight.$ $ Rightarrow J = fracx2sin 2x – frac12int sin 2xdx $ $ = fracx2sin 2x + frac14c mos2x + C.$

Thay vào $(1)$: $I = frac14x^2 – frac12left( fracx2sin 2x + frac14c mos2x ight)$ $ = frac14left( x^2 – xsin 2x – frac12c mos2x ight) + C.$

3. Bài tập nguyên hàm

Bài tập 2: Tìm nguyên hàm $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx .$

Giải

Theo dìm xét trên, ta sử dụng cách thức hệ số bất định. Ta có: $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx $ $ = left( a_1x^3 + b_1x^2 + c_1x + d_1 ight)c mosx$ $ m + left( a_2x^3 + b_2x^2 + c_2x + d_2 ight)mathop m s olimits minx$ $(1).$

Lấy đạo hàm nhì vế của $(1)$:

$ Leftrightarrow left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minx$ $ m = < ma_ m2x^3 + left( 3a_1 + b_2 ight)x^2$ $ + left( 2b_1 + c_2 ight)x + c_1 + d_2 m>cosx$$ – < ma_ m1x^3 – left( 3a_2 – b_1 ight)x^2$ $ – left( 2b_2 – c_1 ight)x + c_2 – d_1>sin x$ $(2).$

Đồng độc nhất thức ta được: $left{ eginarrayl a_2 = 0\ 3a_1 + b_2 = 0\ 2b_1 + c_2 = 0\ c_1 + d_2 = 0 endarray ight.$ và $left{ eginarrayl – a_1 = 1\ 3a_2 – b_1 = – 1\ 2b_2 – c_1 = 2\ – c_2 + d_1 = – 3 endarray ight.$ $ Rightarrow left{ eginarrayl a_1 = – 1;a_2 = 0\ b_1 = 1;b_2 = 3\ c_1 = 4;c_2 = – 2\ d_1 = 1;d_2 = – 4 endarray ight.$

Khi đó: $I = left( – x^3 + x^2 + 4x + 1 ight)c mosx$ $ m + left( m3 mx^ m2 – 2x + 4 ight)mathop m s olimits minx + C.$